(3S-5S-6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3-5-dihydroxyhept-6-enoic-acid has been researched along with Neuroblastoma* in 1 studies
1 other study(ies) available for (3S-5S-6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3-5-dihydroxyhept-6-enoic-acid and Neuroblastoma
Article | Year |
---|---|
Mesenchymal subtype neuroblastomas are addicted to TGF-βR2/HMGCR-driven protein geranylgeranylation.
The identification of targeted agents with high therapeutic index is a major challenge for cancer drug discovery. We found that screening chemical libraries across neuroblastoma (NBL) tumor subtypes for selectively-lethal compounds revealed metabolic dependencies that defined each subtype. Bioactive compounds were screened across cell models of mesenchymal (MESN) and MYCN-amplified (MYCNA) NBL subtypes, which revealed the mevalonate and folate biosynthetic pathways as MESN-selective dependencies. Treatment with lovastatin, a mevalonate biosynthesis inhibitor, selectively inhibited protein prenylation and induced apoptosis in MESN cells, while having little effect in MYCNA lines. Statin sensitivity was driven by HMGCR expression, the rate-limiting enzyme for cholesterol synthesis, which correlated with statin sensitivity across NBL cell lines, thus providing a drug sensitivity biomarker. Comparing expression profiles from sensitive and resistant cell lines revealed a TGFBR2 signaling axis that regulates HMGCR, defining an actionable addiction in that leads to MESN-subtype-dependent apoptotic cell death. Topics: Antineoplastic Agents; Apoptosis; Biomarkers, Tumor; Cell Line, Tumor; Fluvastatin; Humans; Hydroxymethylglutaryl CoA Reductases; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lipids; Lovastatin; Methotrexate; N-Myc Proto-Oncogene Protein; Neuroblastoma; Protein Prenylation; Receptor, Transforming Growth Factor-beta Type II; RNA, Small Interfering; Signal Transduction; Triamterene | 2020 |